
ggplotFL: plotting FLR objects with ggplot2
03 March, 2019

The R package ggplot2 offers a plotting style and tools that are increasingly becoming a data visualization
standard. One of the added values of ggplot2 is the ease in displaying highly dimensional data in an intuitive
way. For these reasons there are a number of standard methods implemented in the package ggplotFL to plot
FLR objects, stock assessment diagnostics and MSE results. In addition, standard ggplot2 methods and
functions can be used by converting FLR objects into data frames, thus giving an extra flexibility in plotting.

Required packages

To follow this tutorial you should have installed the following packages:

• CRAN: ggplot2
• FLR: FLCore, ggplotFL

You can do so as follows,
install.packages("ggplot2")
install.packages(c("ggplotFL"), repos="http://flr-project.org/R")

Load all necessary packages, trim pkg messages
library(FLCore)
library(ggplotFL)

Load datasets for tutorial
data("ple4")
data("ple4sex")
data("nsher")

Using ggplot2 with FLR objects

The ggplot2 package provides a powerful alternative paradigm for creating both simple and complex plots
in R using the ideas of Wilkinson’s Grammar of Graphics.

To facilitate the use of ggplot2 methods in FLR, the ggplotFL package has been created. The main resources
on offer in this package are overloaded versions of the ggplot() method that directly accept certain FLR
classes, a new set of basic plots for some FLR classes based on ggplot2 instead of lattice, and some
examples and documentation on how best to make use of ggplot2’s powerful paradigm and implementation
to obtain high quality plots for even fairly complex data structures.

The overloaded ggplot method

The standard ggplot function expects a data.frame for its first argument, data. If ggplot is called with
an FLR object, a conversion to data.frame takes place, and any other arguments provided get passed to
the original ggplot(). The conversion makes use of as.data.frame1 methods defined in FLCore, with the
cohort argument set to TRUE.

As an example, the FLStock of ple4 is a list containing a number of elements.
1method?as.data.frame('FLQuant')

1

https://cran.r-project.org/web/packages/ggplot2/index.html
http://www.flr-project.org/FLCore/
http://www.flr-project.org/ggplotFL/

summary of the FLStock
summary(ple4)

An object of class "FLStock"

Name: PLE
Description: Plaice in IV. ICES WGNSSK 2018. FLAAP
Quant: age
Dims: age year unit season area iter

10 61 1 1 1 1

Range: min max pgroup minyear maxyear minfbar maxfbar
1 10 10 1957 2017 2 6

catch : [1 61 1 1 1 1], units = t
catch.n : [10 61 1 1 1 1], units = 1000
catch.wt : [10 61 1 1 1 1], units = kg
discards : [1 61 1 1 1 1], units = t
discards.n : [10 61 1 1 1 1], units = 1000
discards.wt : [10 61 1 1 1 1], units = kg
landings : [1 61 1 1 1 1], units = t
landings.n : [10 61 1 1 1 1], units = 1000
landings.wt : [10 61 1 1 1 1], units = kg
stock : [1 61 1 1 1 1], units = t
stock.n : [10 61 1 1 1 1], units = 1000
stock.wt : [10 61 1 1 1 1], units = kg
m : [10 61 1 1 1 1], units = m
mat : [10 61 1 1 1 1], units =
harvest : [10 61 1 1 1 1], units = f
harvest.spwn : [10 61 1 1 1 1], units =
m.spwn : [10 61 1 1 1 1], units =

By calling as.data.frame() on an FLStock, the list is collapsed to a dataframe that than can be plotted by
selecting the right dimensions in terms of slot, age, iter, etc.. :
head(as.data.frame(ple4))

slot age year unit season area iter data
catch all 1957 unique all unique 1 78360
catch all 1958 unique all unique 1 88785
catch all 1959 unique all unique 1 105186
catch all 1960 unique all unique 1 117975
catch all 1961 unique all unique 1 119541
catch all 1962 unique all unique 1 126290

FLQuant

Passing an FLQuant object to ggplot, we can specify the names of the dimensions as variables in the plot,
where data refers to the column storing the actual numeric values. For example, to plot data (the catch slot
from ple4 in this case) against year, we could use
ggplot(data = catch(ple4), aes(year, data)) + geom_point() + geom_line() + ylab("Catch (t)") + xlab("Year")

2

100000

150000

200000

250000

300000

1960 1980 2000 2020

Year

C
at

ch
 (

t)

where we pass directly an FLQuant object for the data argument in ggplot, specify an aesthetic mapping
(aes(year, data)), and add both points (geom_point()) and lines (geom_line()), together with the
appropriate axis labels.

FLQuants

Similarly, we can pass on to ggplot an object of class FLQuants, and the conversion to data.frame will make
use of the corresponding method 2. A new column gives the name of each FLQuant in the list, called qname.
We can then use it to, for example, define a call to facet_wrap() to obtain a separate subplot per element.
ggplot(data=FLQuants(Yield=catch(ple4), SSB=ssb(ple4), F=fbar(ple4)), aes(year, data)) +

geom_line() + facet_wrap(~qname, scales="free_y", nrow=3) + labs(x="", y="")

This procedure is particularly useful when plotting information from objects with multiple FLQuant slots,
because a subset of slots can be selected for plotting. Furthermore, transformations or computations can
even be carried out in the call to the FLQuants() creator.

FLStock

A whole FLStock object can also be used as argument to ggplot(), even if the heterogeneity in scale of the
data contained makes the plot slightly confusing. For example, we can plot time-series of every FLQuant slot
in ple4, with colour applied to different age dimensions, by calling
ggplot(data=ple4, aes(year, data)) + geom_line(aes(group=age, colour=factor(age))) +

facet_wrap(~slot, scales="free", nrow=3) + labs(x="", y="") + theme(legend.position = "none")

2method?as.data.frame('FLQuants')

3

F

SSB

Yield

1960 1980 2000 2020

100000

150000

200000

250000

300000

2e+05

4e+05

6e+05

8e+05

0.2
0.3
0.4
0.5
0.6
0.7

Figure 1: Facet wrap line plot of time series from an FLQuants object.

m mat harvest harvest.spwn m.spwn

landings landings.n landings.wt stock stock.n stock.wt

catch catch.n catch.wt discards discards.n discards.wt

1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020

1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020

1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 2020
0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.5

1.0

0e+00

3e+05

6e+05

9e+05

0e+00

1e+06

2e+06

3e+06

4e+06

−0.050

−0.025

0.000

0.025

0.050

40000

80000

120000

160000

3e+05

5e+05

7e+05

9e+05

−0.050

−0.025

0.000

0.025

0.050

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.00

0.25

0.50

0.75

0e+00

3e+05

6e+05

9e+05

0e+00

1e+05

2e+05

0.00

0.25

0.50

0.75

1.00

100000

150000

200000

250000

300000

100000

150000

0.050

0.075

0.100

0.125

0.150

Figure 2: Overall ‘ggplot‘ of an ‘FLStock‘ object, faceted by slot.

4

age: 1
age: 2

age: 3
age: 4

age: 5
age: 6

age: 7
age: 8

age: 9
age: 10

1960 1980 2000 2020

0e+00
3e+05
6e+05
9e+05

0
250000
500000
750000

1000000

2e+05
4e+05
6e+05

1e+05
2e+05
3e+05

50000
100000
150000

25000
50000
75000

100000

100002000030000400005000060000

0
10000
20000
30000

05000100001500020000

0
10000
20000

Figure 3: Standard ggplot2-based plot for an FLQuant object with multiple *year*s and *age*s.

New plot() methods for FLR classes

The ggplotFL package also provides new versions of the plot method for a number of FLR classes. Each S4
class defined in any FLR package has a plot() method available that provides a quick visual summary of
the contents of the object.

FLQuant

The standard plot() method for FLQuant defined in ggplotFL uses the faceting capabilities of ggplot to
better present some of the multiple dimensions of these objects. If any dimension, other than year and iter,
has length greater than one, it will be added to the formula used by facet_grid. For example, an FLQuant
with dimensions
dim(catch.n(ple4))

[1] 10 61 1 1 1 1

will generate a plot with a time series by year of the data it contains, with horizontal facets for the only
dimension, other than year, of length greater than 1 (here age).
plot(catch.n(ple4))

For FLQuant objects with iterations, the plot method will calculate, by default, the 50% (median), 10%,
25%, 75% and 90% quantiles, to be plotted as a solid line (50%), a dotted line (10%, 90%) and a coloured
ribbon (25%-75%).

5

1960 1980 2000 2020

1.0

1.5

2.0

2.5

3.0

Figure 4: Standard ggplot2-based plot for an FLQuant object with multiple iterations.

plot(rlnorm(200, fbar(ple4), 0.15))

Different quantiles can be specified using the probs arguments, and the alpha transparency of the ribbon will
be proportional to the probability value. A vector of odd length must be passed, and the central point should
be 0.50 so the central tendency line represents the median. The most extreme quantiles will be plotted as
dotted lines, while all others will show up as ribbons.
plot(rlnorm(200, fbar(ple4), 0.15), probs=c(0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95))

FLQuants

The plot method for FLQuants will now by default show each object in a horizontal panel, with independent
scales, by using facet_grid. Objects with iterations will have, as with plot for FLQuant, their median, 10%,
25%, 75% and 90% quantiles shown as a black line and red ribbons with different levels of transparency,
respectively.
fqs <- FLQuants(F = rlnorm(200, fbar(ple4), 0.15), SSB = ssb(ple4), Rec = rec(ple4), Catch = catch(ple4))
plot(fqs)

Plots of multiple FLQuant objects use by default facet_grid with multiple plots stacked on top of each other.
To have the plots on a grid, you can add a call to facet_wrap to change it. For example, here we have a 2x2
grid
fqs <- FLQuants(F = rlnorm(200, fbar(ple4), 0.15), SSB = ssb(ple4), Rec = rec(ple4), Catch = catch(ple4))
plot(fqs) + facet_wrap(~qname, scales="free")

6

1960 1980 2000 2020

1.0

1.5

2.0

2.5

Figure 5: Standard ggplot2-based plot for an FLQuant object with multiple iterations and user-specified
quantiles.

7

F
S

S
B

 (t)
R

ec (1000)
C

atch (t)

1960 1980 2000 2020

1.0

1.5

2.0

2.5

2e+05

4e+05

6e+05

8e+05

1e+06

2e+06

3e+06

4e+06

100000
150000
200000
250000
300000

Figure 6: Standard ggplot2-based plot for an FLQuants object with multiple iterations, and consisting of
four elements.

8

Rec Catch

F SSB

1960 1980 2000 2020 1960 1980 2000 2020

1960 1980 2000 2020 1960 1980 2000 2020
2e+05

4e+05

6e+05

8e+05

100000

150000

200000

250000

300000

1.0

1.5

2.0

2.5

1e+06

2e+06

3e+06

4e+06

Figure 7: Wrap-based ggplot2-based plot for an FLQuants object with multiple iterations, and consisting of
four elements.

9

R
ec (1000)

S
S

B
 (t)

C
atch (t)

F (2
−

6)

1960 1980 2000 2020

1e+06

2e+06

3e+06

4e+06

2e+05

4e+05

6e+05

8e+05

100000
150000
200000
250000
300000

0.2
0.3
0.4
0.5
0.6
0.7

Figure 8: A ggplot2 version of the standard plot() for FLStock, as applied to ‘ple4‘

FLStock

The ggplotFL version of the standard plot for the FLStock class contains the time series of recruitment
(obtained by calling rec()), SSB (ssb()), catch (catch()), and fishing mortality or harvest for selected
ages(fbar()). The four panels are now arranged in a 4-row matrix to better display the trends in the time
series.
plot(ple4)

FLStocks

Similarly, the standard plot() method for the FLStocks class now relies on ggplot. For example, we can
create an example FLStocks object by splitting the female and male units of ple4sex and adding them as
separate elements in the list. A call to plot() would give us the corresponding plot. Remember the object
returned by ggplot can always be assigned to a variable in the workspace and modified as required (see
examples below).
plot(FLStocks(Male=ple4sex[,,'male'], Female=ple4sex[,,'female'])) + theme(legend.position="top")

FLSR

The ggplotFL version of the class plot for FLSR contains the same six panels as before:

(1) stock-recruit data, fitted model and lowess smoother,

10

R
ec (10

3)
S

S
B

 (t)
C

atch (t)
F (2

−
6)

1960 1970 1980 1990 2000

0

500000

1000000

1500000

0e+00

1e+05

2e+05

3e+05

0e+00
2e+05
4e+05
6e+05
8e+05

0.00
0.25
0.50
0.75
1.00

Female Male

Figure 9: ggplot2 version of the standard plot() for FLStocks, as applied to the sex-separated FLStock object
‘ple4sex‘

(2) residuals by year,
(3) lag 1-correlated residuals,
(4) residuals by SSB,
(5) residuals qqplot, and
(6) residuals by fitted values.

Blue lines are lowess smoothers, to better visualize trends in the data shown.
plot(nsher)

FLSRs

A class plot also exists for FLSRs objects, lists with FLSR elements. The comparison shown involves only the
model fit across the different model functions or formulations, but not the residuals diagnostics available for
FLSR. The default legend contains the formula of each of the fitted models and the parameter values (or the
median if multiple iterations exist).
srs <- FLSRs(sapply(c('ricker', 'bevholt'), function(x) {

y <- nsher
model(y) <- x
return(fmle(y))}))

plot(srs)

An alternative labeller function exists (modlabel) that returns the name of the SR model function and the
parameter values, by using the legend_label argument.

11

0

3000

6000

9000

0 50 100 150 200

SSB (kt)

R
ec

ru
its

 (
10

00
)

−1.0

−0.5

0.0

0.5

1.0

1960 1970 1980 1990 2000

Year
R

es
id

ua
ls

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Residualst

R
es

id
ua

ls
t+

1

−1.0

−0.5

0.0

0.5

1.0

0 50 100 150 200

SSB

R
es

id
ua

ls

−1.0

−0.5

0.0

0.5

1.0

−2 −1 0 1 2

Theoretical

S
am

pl
e

−1.0

−0.5

0.0

0.5

1.0

1000 2000 3000 4000

Recruits^

R
es

id
ua

ls

Figure 10: Standard ggplot2-based plot for an object of class FLSR.

12

0

3000

6000

9000

0 50 100 150 200

SSB (kt)

R
ec

ru
its

 (
10

00
)

rec ~ 119.4 ⋅ ssb ⋅ exp(− 0.009451 ⋅ ssb)

rec ~ 6736 ⋅ ssb (52.2 + ssb)

Figure 11: Standard ggplot2-based plot for an FLSRs object, using default legend labels.

13

0

3000

6000

9000

0 50 100 150 200

SSB (kt)

R
ec

ru
its

 (
10

00
)

ricker(119.4, 0.009451)

bevholt(6736, 52.2)

Figure 12: Standard ggplot2-based plot for an FLSRs object, using model names as legend labels.

plot(srs, legend_label=modlabel)

As is common in ggplot2, labels can be specified directly, overwriting those included in the method. You
should ignore the warning about scale for color being replaced.
plot(srs) + scale_color_discrete(name="SR models", breaks=c('ricker', 'bevholt'),
labels=c("Ricker", "Beverton & Holt"))

Using ggplot2 directly by converting to data.frame

The methods shown above depend on conversion of FLR objects into data.frame, which can then be passed
to ggplot(). Calling ggplot on an FLR object takes care of this conversion behind the scenes, but to obtain
full control and develop certains plots, it is best to explicitely convert the FLR objects into a data.frame.
Different conventions are used in the naming of the dataframe columns created from various FLR classes,
which need to be used when the plot is specified. For further information, please see the help pages for each
data.frame() method 3.

3For example method?as.data.frame('FLQuants')

14

0

3000

6000

9000

0 50 100 150 200

SSB (kt)

R
ec

ru
its

 (
10

00
)

SR models
Ricker

Beverton & Holt

Figure 13: Standard ggplot2-based plot for an FLSRs object, using model names as legend labels.

15

Some examples

Example: plot quantiles of a simulation

To have full control over a plot of the median (or mean) and the confidence or probability intervals of a
simulated or randomized time series, i.e. an FLQuant object with iters, we need to arrange the different values
computed from the object in separate columns of a data.frame.

If we start with some random FLQuant object, such as
fla <- rlnorm(100, FLQuant(exp(cumsum(rnorm(25, 0, 0.1)))), 0.1)
ggplot(fla, aes(factor(year), data)) + geom_boxplot() + xlab("")

\begin{figure}

{

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

da
ta

}

\caption{Distribution of values of a simulated time series plotted using geom_boxplot()} \end{figure}

We can first compute the necessary statistics on the object itself, as these operations are very efficient on an
array. quantile() on an FLQuant will return the specified quantiles along the iter dimension. Let’s extract

the 10th, 25th, 50th, 75th and 90th quantiles.
flq <- quantile(fla, c(0.10, 0.25, 0.50, 0.75, 0.90))

The object can now be coerced to a data.frame and inspected to see how the 100 iters have now been
turned into the five requested quantiles in the iter column

fdf <- as.data.frame(flq, drop=TRUE)
head(fdf, 3)

16

year iter data
1 10% 2.238
2 10% 2.432
3 10% 2.379

The long-format data.frame can be reshaped into a wide-format one so that we can instruct ggplot to use
the quantiles, now in separate columns, to provide limits for the shaded areas in geom_ribbon. To do this we

can use reshape, as follows
fdw <- reshape(fdf, timevar = "iter", idvar = c("year"), direction = "wide")

This creates a wide data.frame in which the iter column is spread into five columns named as the levels of
its conversion into factor

levels(fdf[,'iter'])

[1] "10%" "25%" "50%" "75%" "90%"

We can now use those five quantile columns when plotting shaded areas using geom_ribbon. Please note that
the column names returned by quantile() need to be quoted using backticks.

p <- ggplot(data=fdw, aes(x=year, y=`data.50%`)) +
geom_ribbon(aes(x=year, ymin = `data.10%`, ymax = `data.90%`), fill="red", alpha = .15) +
geom_ribbon(aes(x=year, ymin = `data.25%`, ymax = `data.75%`), fill="red", alpha = .25) +
geom_line() + ylab("data")
print(p)

\begin{figure}

{

2.0

2.5

3.0

3.5

0 5 10 15 20 25

year

da
ta

17

}

\caption{Time series with 75% and 90% credibility intervals plotted using geom_ribbon.} \end{figure}

Assigning the result of the call to ggplot() to a variable, as done above, will allow us to reuse the plot later
on by modifying or adding components.

Example: Simulation trajectories plot

If the result of a stochastic simulation is summarised by showing credibility intervals, it is very informative to
plot as well some of the individual iterations (in this case we want iteration 1, 4 and 23) as a way of showing
the fact that individual trajectories are generally not as smooth as, for example, the median shown in the

figure above.
fds <- as.data.frame(iter(fla, c(1, 4, 23)))
p + geom_line(data=fds, aes(year, data, colour=iter), size=0.5) +

theme(legend.position = "none")

\begin{figure}

{

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20 25

year

da
ta

}

\caption{Spaghetti plot of a stochastic simulation, by calling geom_line on top of the stored ribbon plot.}
\end{figure}

This is easy to do in ggplot2 by adding an extra element on top of the previous plot, stored in the p object
from the code above.

18

1

2

3

4

5

6

7

8

9

10

1960 1980 2000 2020

year

ag
e

Figure 14: Bubble plot of catch by age in numbners for North Sea plaice.

Example: Using FLQuants

Coercion using as.data.frame, combined with the use of reshape, or dcast and melt (from the reshape2
package4), provides the FLR user with the tools required to create a large range of ggplots from any FLR

object.

TODO: ADD text & example

Example: Bubble plots

Bubble plots allow us to represent a third continuous dimension in a scatter plot by sizing points according
the value of a variable. For example, catch in numbers by age and year can be visualised using

ggplot(catch.n(ple4), aes(year, as.factor(age), size=data)) + geom_point(shape=21) +
scale_size(range = c(1, 20)) + ylab("age") + theme(legend.position = "none")

where data is used to size the bubbles in the call to aes(). This single line of code replaces the functionality
offered by the lattice-based bubbles() method available in FLCore.

4http://cran.r-project.org/package=reshape2

19

http://cran.r-project.org/package=reshape2

1

2

3

4

5

6

7

8

9

10

1960 1980 2000 2020

year

ag
e

factor(sign(resid)) −1 1

resid 0 250000 500000 750000

Example: Residual plots

Residuals plots can be built, for example, for the numbers-at-age in the catch FLQuant by subtraction of the
computed mean from the data. Then bubble plots can be built in ggplot, with size proportional to the

residual and conditional colour coding for positive/negative residuals.
dat <- as.data.frame(catch.n(ple4))
dat$resid <- dat$data - mean(dat$data)
ggplot(dat, aes(year, as.factor(age), size=resid)) +

geom_point(shape=21, aes(colour=factor(sign(resid)), fill=factor(sign(resid)))) +
scale_size(range = c(1, 20)) +
scale_colour_manual(values=c("black", "white")) +
scale_fill_manual(values=c("lightgray", "black")) +
ylab("age")

References

Wilkinson, L. 1999. The Grammar of Graphics, Springer. doi 10.1007/978-3-642-21551-3_13

More information

• You can submit bug reports, questions or suggestions on this tutorial at https://github.com/flr/doc/
issues.

• Or send a pull request to https://github.com/flr/doc/

20

http://dx.doi.org/10.1007/978-3-642-21551-3_13
https://github.com/flr/doc/issues
https://github.com/flr/doc/issues
https://github.com/flr/doc/

• For more information on the FLR Project for Quantitative Fisheries Science in R, visit the FLR webpage,
http://flr-project.org.

Software Versions

• R version 3.5.2 (2018-12-20)
• FLCore: 2.6.12
• ggplotFL: 2.6.6
• ggplot2: 3.1.0
• Compiled: Sun Mar 3 09:49:38 2019

License

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International license.

Author information

Giacomo Chato Osio, Iago MOSQUEIRA. European Commission Joint Research Centre (JRC),
Institute for the Protection and Security of the Citizen (IPSC), Maritime Affairs Unit, Via E. Fermi 2749,

21027 Ispra VA, Italy. https://ec.europa.eu/jrc/

Katell Hamon Wageningen UR. Wageningen Economic Research. Alexanderveld 5, The Hague, The
Netherlands.

21

http://flr-project.org
https://creativecommons.org/licenses/by-sa/4.0
https://ec.europa.eu/jrc/

	Required packages
	Using ggplot2 with FLR objects
	The overloaded ggplot method
	FLQuant
	FLQuants
	FLStock

	New plot() methods for FLR classes
	FLQuant
	FLQuants
	FLStock
	FLStocks
	FLSR
	FLSRs

	Using ggplot2 directly by converting to data.frame
	Some examples
	Example: plot quantiles of a simulation
	Example: Simulation trajectories plot
	Example: Using FLQuants
	Example: Bubble plots
	Example: Residual plots

	References
	More information
	Software Versions
	License
	Author information

